
-\ c... 

I 
1 

( c \ /’ 

REFERENCE MANUAL 

930 LISP 

L. Peter Deutsch 

Butler W. Lampson 

University of California, Berkeley 

Document No. 30.50.40 

Issuea June 5, 1965 

Revised November 16, 1965 

Office of Secretary of Defense 

Advanced Research Projects Agency 

Washington 25, D. C. 



‘I 

6 ’ 
c, 

30.50.40 

May 17, 1965 

1.0 

2.0 

3.0 
4.0 

5.0 
6.0 

7.0 

8.0 

9-o 

TABLE OF CONTENTS 

Lisp Data. .. *'. .. i ............... 

Lisp Programs ..................... 

2.1 Basic Function .................. 

2.2 Function Definition ................ 

2.3 Conditionals ................... 

2.4Recursion. .................... 

Evaluation ...................... 

Arithmetic ...................... 

StandardFunctions .................. 

Changing List Structure ................ 

finctionals. ..................... 

Bog ......................... 

Property Lists .................... 

10.0 Input-Output ..................... 

XL.0 Other Useful Functions ................ 

3.2.0Error comments .................... 

13 .O Special Features of the M-Language Translater ..... 

14.0 The Lisp Operating System ............... 

Appendix1 ......................... 

30.50.40-1-1 
30.50.40-2-l 

30.50.40-2-L 

30.50.40-2-2 

30.50.40-2-3 
30.50.40-2-4 

30.50.40-3-l 
30.50.40-4-l 
30.50.40-5-l 
30.50,40-6-1 
30.50.40-7-l 

30.50.40-8-l 

30.50.40-g-1 
30.50.40-10-1 
30.50.4~11-l 
30.50.4~l2-1 
30.50.40-13-l 
30.50.40-14-l 
30.50.40-A-l 

-- 
- 



* . 

C’ i 
30.50.40-1-l 
MW 28, 1.965 

-_ c.. \ I 

1.0 Lisp Data 

Lisp operates on data called S-expressions. The basic components 

of the language are called atoms. An atom may be 
1) A name, which is a string of letters and digits of arbitrary 

length, beginning with a letter. The particular letters and dig&s used 

have no significance except to distinguish the name from other names. 

2) A number, written as a decimal integer of less than 24 bits, 

possibly with a negative sign. 

3) The special symbols T and NIL. T stsnds for truth.. NIL stands 

for falsity and a number of other things. 

.S-expressions are made up of dotted pairs. The simplest dotted 

pair is a dotted pair of two atoms: (A.B). However, the components of a 

dotted pair may themselves be dotted pairs: (A.(C.B)), for instance. 

The most common form for a dotted pair is a standard represen- 

tation of a list or ordered set of dotted pairs or atoms. In this 
representation the ordered set A,B,C,D,E w&d be written 

(A.(B.(c.(D.(E.N~))))). Th is is the reader's first introduction to Lisp 

parrentheses. Since the explicit notation is somewhat cumbersome, a cam- 

pressed form is normally used, in which the above list is written (A B C D E). 

Blsnks separate the elements of the list. Any number of blanks msy be 

used instead of one. Although the dotted pair notation is rarely seen 

outside of the introductory section of a manual-, it is the basis of Lisp 
data snd program structure and can slwa;ys be referred back to in case Of 

confusion. 



” . 

-.. 
L 1 

I I c \ /’ 

, 

30.50.40-2-l 
Mw 28, 1965 

2.0 Lisp programs 

A Lisp program is basically sn S-expression which is inter- 

preted as a function c&L1 according to the following rule: a list is evaluated 

by taking its first element as a function name and mbsequent elements ace 

arguments of the function. &L arguments sre evaluated before the function 

is cslled. Arguments may themselves be lists, i.e. function calls. 

Thus (A B C) is a call of the function A with arguments obtained by 

evaluating the atoms B and C. (A (B C) C) is a call of A with the first 
argument obtained from a call of B with argument the value of C, and the 

second argument the value of C, 

To prevent evaluation of arguments the function QUOTE is used. 

It is a function like an;y other, except that its argument is not evaluated, 

since its job is to prevent evaluation of the argument. Thus 

(A (QUO’J.“E B) (QUOTE C)> is a call of A with arguments B and C, not the 

values of B and C. Likewise (A (QUOTE (B C)) (QUOTE C)) is a czof A 

with arguments the list (B C) and the atom C. 

S-expressions are extremely inconvenient for complex functions, 

so Lisp programs are normally written in M-expressions. M is for meta. 

Function calls in M-emressions look like those of ordinary mathematics. 

The S-expression (A B C) corresponds to the M-expression a[b;c]. Note the 

use of brackets and semicolons. The lower case letters are customary in 

handwritten M-expression, upper case being reserved for S-expressions 

appearing within the M-expressions. On the teletype, of course, lower case 

is not available. 

2.1 Basfc function 

Lisp has the following basic functions: 

car [x] takes a list as its argument and has the first element 

as its value. thus car ['(A B C)*l is A. In M-language the single quote is 

used in place of the function QUOTE. Car of w atom is an error. Further 

examples: cas ['(((A B) C) (DE F))'l is ((A B) C); catr ['((AB C))'] is 

(A B C). 



r - .  

C’ 

./’ 

30.50.40-2-2 
Mw 28, 1965 

cdr Cxl takes a list as its argument and has the list of the 
elements after the first as its value. If there is only one element, the 
va;lue is NIL. cdr of an atom is illegal. Thus cdr [*(A B c)*] is (B C). 
Note that car ['(A B)'] is A but cdr ['(A B)'] is (B), & B. The value 

of cdr is always a list unless it is NIL. 

cons [x;yl takes two arguments and has the dotted pair of them 

as its value. !RIUS cons ['A'; 'B*] is (A.B). Because of the convention 

for writing lists as dotted pairs, cons [*A*;'(B C D)'] is (A B C D). 

Note that cons is not symmetric in its two arguments: cons ['(B C D)';'A'] 

is ((B C D).A), not (B C D A). 

atom [x] is a predicate. This is, its value is either T or ML. 

In particular, atom [x] is T if x is atomic. Thus atam ['A'] is T, atam 

['(B C)'] is NIL. 

eq [x;yl is another predicate. Its value is T if x and y sre 

the same atom and NIL otherwise. 
These are the fundamental operations of Lisp. In addition, there 

are fanction definitions and conditionals. 

2.2 Function definition 
The method of defining functions in M-language will be clear 

from the following exsmple: 

conscar [x;yl = cons [car[xl;yl 

The list of atams after the function name is the list of bound variables. 
When the function is called its actual arguments are evaluated. The old 
values of the atoms x and y sre then saved and their values are set to the 

values of the arguments. Thus, when they are evaJuated in the function 

definition, the values they prwide will be the values of the actual 

arguments. When the function is finished, the old values of x and y are 

restored. In this way the function definition is completely insulated 

fram any other uses to which x and y may have been put, and other functions 
which use x and y need not be concerned about what conscar does to them. 



30.50.40-2-3 
~a;y 28, 1965 

The matter of evaluation end bindings is very importent in Lisp 

and will receive further discussion later. The important points to remember 

are 1) a function call sets the values of the atoms used in the def- 

inition to the values of the actual arguments in the csXL. The old values 

are restored afterwards. 

2) whenever an expression appears as a function argument it 

is evaluated. If it is an atom, the evaluation produces its latest 

binding. 

Another wqy of writing the above function definition makes the 

binding more explicit: 

conscar = lambda [[x ;yl; cons[car[xl;yll 

Lambda is a function which msy be used by the running program to define 

new functions. It differs from an ordinary function in that it expects 

its first argument to be a list of atoms and does not evaluate it. 

2.3 Conditionals 

The one remaining major feature of Lisp is the method for 

handling conditional. branches. This may be illustrated by a function 

definition: 

neqCx;yl = [eq[x;yl # NIL; %@.I 

The first bracket after the = signals the stsrt of a conditional, which 

is composed of a number of clauses of the form expression # expression. 

The first eqression in the first clause is evaluated. If its value is 

not NIL, the second expression is evaluated and its value is the value 

of the entire conditional. The remaining clauses are ignored. If the 

first expression turns out to be NIL, the second expression is ignored 

and attention turns to the second clause. This process proceeds until a 

first expression is found whose value is not NIL. The absence of such 

an expression is an error- For this reason it is usual to terminate 

conditionals with T#, which becomes the catch-all alternative. The 

reader will, observe from this that the value of T is always T. Likewise, 

the value of NIL is alweys ND;. 



3O.f50.40-2-4 
November 16, 1965 c.j 

2.4 Recursion 

This is not a new feature of Lisp, but it is so important that 

it deserves special treatment. A function definition may contain calls on 

sny functions, including the one being defined. Because of the machinery 

for binding variables which has already been discussed, the programmer need 
not worry about the identity of the arguments. Exsmple: 

ecpdAx;yl = [atom Exl #[atcdyl # eq[x;yl; r#Nnl; atodyl#NIL; 
equal [car[x];cas[y]]# equal[cdr[xl; cddyll; T#NILl 

This function comperes two arbitrary lists for equality. The definition 

ssys: if x is atomic then if y is atomic the value is eq[x;y], which is 

already defined. If x is atomic and y not atomic they cannot be equal. 

If x is not atomic, compare csr [x] and car [y]. If they sre equal, x and 

y are equal if cdr [xl and cdr [y] are. If cas [x] and car [y] sre not 

equal then x and y are not. 

The secret of good Lisp programming is knowing how to use 

recursion. THDJKRECURSIvELY. Recursion can be avoided $ith FROG, 

but people who use PROS too much will never get to Heaven. 

I -.- 

----i 



30.50.40-3-l 
November 16, ~$6 

3.0 Evaluation 

What is evaluated? 'Everything except the argument of QUCYJ!E, 

the first argument of LAMBDA, SETQ and PROG; and pieces of cond3.tionsJ.s 

which don't get evaluated according to the rules. 

What does evaluation do? Atoms are replaced by their most recent 

binding. Functions have their arguments evaluated and then get called. 
QUO!l!E simply disappears and leaves its literal argument. (Note the 

implications: it is almost slwsys wrong to use QUOTE except on data. 

If, for instance, you quote a function argument in a definition it will 

not be replaced by its actual argument, since it will not be evaluated). 
Lsmbda and conditionals do peculiar things as described aba\re. 

Bindings determine the values of atcans. The value of a number, 
T or NIL is always what you think it is, All other atoms ma;y have values 

which are acquired by giving them bindings. The most common way of doing 

this is to use them as arguments in a definition of a function. When the 

function is cslled the atoms used as arguments acquire new bindings and 

therefore new values. The old values ase not lost; they are saved on the 

pushdown list until the functz$on terminates and then restored. This means 
that outside the function6$~the names used for the arguments sre not 

important. Except for one thing: if the function uses evil, which does 

an extra evaluation of its argument, and the argument of evil when evaluated 
once turns out to be one of the function arguments, the second evsluation 

will get the most recent binding, which will not be the one the atom had 

in the cslling function. Thus the definitions 

dum[xl = cons [x;eval.[Yl3 

redum [y;zl = dum [zl 
will cause redum ~'(QUOTE A) *;*B'] to have the v&Lue (B.A), PS expected; 

i-twill cause redum [ Z ' ';#'A'] to have the value (A.A), again as expected; 

but if re2dum [w;xl = redum lk;Wl 

then r&t&m ['A*;'X') has the value (A.A), not (A.X), because in ihrm 

the most recent bir&hg of x is the one produced by the call of dhjm, namely 
'+j h. 'I 1 i 



, . 
30.50.40-3-2 

0 
November 16, 19$ 

A, not the one produced by the c&Ll. of re2dum, which is X. More realistic 

examples sre also more complex (that is really possible). 

There is another wsy to get bindings, with the function &. 

set[x;y] evaluates its first srgument and expects to get an atcm. It 

then ev&.uates its second argument and destroys the current binding of 
evsl[x], replacing it with eval[y]. Amore useful function is setq, 
which quotes its first argument. If x is not a flrnction argument in 

a definition, then setq[x;*A'] sets the value of x to A permanently. 

If x is a function argument, then the setq overrides the current binding, 

but when that binding is destrayed by the termination of the function 

whose c&CL produced it, the effect of the setq is also lost. 

c 
\\ 
1' 

When the user types in to Lisp at the console, he is talking 

to eval. More precisely, what he types is substituted for X in the form 
(PRINT X), where PRIMl is a function which prints its argument. This means 

that evil is applied once to whatever is typed. Hence, typing an atom 

causes its va;lue to be printed out. If the atom is a function name, 

its value is the S-expression function definition. 

!Cyping (CONS A B) probably gives an error, unless A and B hazve 

been setq'ed. On the other hand (CONS (QUOTE A) (QUOTE B)) gives (A.B). 



30.50.40-4-1 

MW 28, 1965 

4.0 Arithmetic 

There sre a few Lisp functions for operations on numbers. Plus 

takes any number of arguments and adds them together to get its result. 

Times multiplies its arguments. Quot divides the first sxgument by the 

second. Rem takes the first argument modulo the second. Note that because 

arguments are evaluated before the functions are called, the expression 

(a+b) (c+d) is evaluated in Lisp by times [plus[a;b];plus[c;d3). 

To compare numbers the predicate & is available; it is true 

if the first argument is greater than the second. The predicate numbp 

is true if its argument is a number. AU of these f'unctions except 

rnnnbp give errors if their arguments are non-numeric. 

Minus is a function of one numeric argument which returns the 
negative of the argument as its value. 



. . 

c: 
3wo.40-5-l 

November 1.6, 1965 

5.0 Standard functions 

The following functions are either built into the 930 Lisp 

system or in the library: 

list takes its arguments and strings them together into a list. It is one 

of the few standard functions which take a variable number of arguments. 

member [x;y] is true if x is a member of the liS‘b Y. The definition is 

member [x;yl = [nm[y]#IL; equal [x;cadyl I#JJ; Ir;t member Ex;c~[Y]]] 

It was defined above. equal [x;y] is true if x equals y. 

subst [x;y;zl substitutes x for all occurrences of the S-expression y 

in z. subst Cx;y;zl = [atam[z]#[eq[z;y]~~;T#z];r#cons[subst 
[x;y;c~bdl; subs-t [x;y;cdr[zllll 

sassoc [x;a;u] searches the x>air list a for a dotted pair whose first -- 
element is x and returns this Tair as its value. A pair list is a list of 

dotted pairs. If there is no such pair the value is the value of the 

function u of no arguments. 

sassoc [x;a;ul = EnU[al# u[ I; eq[ caar[al;xl#cadal;T#sassoc[x;cdr[al;ull 

pair [x;y] has as value the list of pairs of corresponding elements of the 

lists x and y. It can be used to construct pair lists of the kind searched 

by sassoc. 

It is & like append [x;y] combines its two arguments into one new list. 

cons. 

append Ex;yl = [null[x]~;T#cons[c~[x];a~end[c~~x~;y~~~ 

and takes any number of arguments and is T if none of them is NIL, NIL 

otherwise. (' :i,..,., 
.I: 

.,,,,, 
(' ? - ; '\ : j I 

z takes any number of arguments and is NIL if all of them are NIL', 'I' 

c 
‘\ ,' 

otherwise. of' ii 



30.50.40-5-2 

Mw 2% 1965 

null [xl is T if x is NIL or the empty list (), which is the same thing. 

Otherwise it is NIL, null is exactly the same as &, which is therefore 

not provided. dz$%; z luh~~Cxl-r~~~-.~;~.,~~~"-] ;rdNIL) 

gensym[ 1 has as value a symbol guaranteed different from any other in the 

world. 

length lx] has the!?number of elements in x,a.soits value. 
1 '..., ,, Jj 1 .I L ~&:,,'~ +-I~~["~‘"& il~r:i,~~~~l)fc4yCX;311 

reverse [xl has as value the li& with the elements of x in reverse order. 

eval has already been discussed. It evaluates its argument again. Do not 

forget that the argument is always evaluated once. 

c; 
-1 

prw2 Cx;yl h as as its value the value of y. Its function is to get both 

x and y evaluated. 

casz [xl = Carr[C~[Xll 

cadr [xl = cmccdr[xll 

cdar 1x1 = cdr[cm[xll 

cddr [x] = c&[c~Exll 
Each define [xl takes as its sinple argument a list of things to be defined. 

of these things is either a list of two elements: 

(function name S-expression) 

which sets the literal S-expression to be the value of the function name; or 

a list of three elements: 

(function name (list of variables) S-expression) 

which sets the value of the function name to (LAMBDA (list of variables) 

S-expression). 

Each element: of the first kind is equivalent to 

function name = 'S-expression' 
and each element of the second kind is equivalent to 

-.. \I 
c.I / 

function name [list of variables] = 'S-expression'. 

function [x] is exactly equivalent to quote [Xl. 



30.50.40-6-l 

Mw 28, 1965 

6 .O changing list structure 

A dotted pair in memory is a word with two pointers, one to the first 
element of the pair and the other to the second. The list (A B C D) then looks 

like this: 

Because of this use of pointers, a list msy be a member of many other litits, 
each of which has a pointer to it. When a new list is generated by cons, 

a single memory word is used. In it are placed pointers to the two elements 

of the dotted pair being created by the cons. No account is taken of other 

lists of which either element may be a member. 

These considerations are important for proper use of two functions 

which explicitly change pointers in an existing list structure, since these 

functions csn affect all the lists which have pointers to the cell being 

changed. If the programmer is not alert, he msy not be aware of how many such 

lists there sre. 

rolaca [x;y] replaces the first element of the dotted pair x with a pointer 

to y. 

r-olacd [x;y] replaces the second element of the dotted pair x with a pointer 

toy. 
rplaca looks samething like cons [y;cdr[xll, but it is & the same. It does 

not create a new word, and it permanently changes X. 

A useful function which mskes use of these operations is nconc, 

which is like append except that it does not copy its first argument. For 
this reason it is somewhat more efficient than append. It is also much more 

dangerous. Unless you are very sure of what you are doing, do not use 



3O.TO.40-6-2 

Ma;y 28, 1965 

nconc except when the first argument has just been created by list or some 

similas function. Nconc does a rplacd on the last element of its first 

argument. 



c --,: 
30.50.40-7-l 

Mw 28, 1965 

7.0 Funct iona& 

c. 
c j 

It is possible, as the discerning reader will already have noticed, 

for a function to have functions as arguments. Such functions are called 

functionals, and they are very useful. The most useful ones are the true 

Lisp programmer's substitute for iteration; they are the mapping f'unction&Ls. 

manlist [x;f] runs down the list x and applies the function f to each sublist 

obtained by taking elements off the front of x. The values are then cons'ed 

together. The definition is clearer: maplist [x;fl = [null.[xl#rsIL;r# 

consCfEx1; maplist[cdr[xl;fl11 

Since this is rarely exactly what is wanted, there are several 

other mapping functions which may be more suitable for partic'uler apJ&katiOnS. 

mapcon [x;fl = [null[x]#NIL;T#nconc[f[xl ; mapcodcddxl ;flll 
is like maplist except that it uses nconc rather than cons. It is not safe 

if the value of f is a list the last element of which is on any other lists. 

IMJCx;fl = [null[x]#NIL;T#prog2[f[xl; map[cdr[x];flll is like maplist 

except that it does not save the values of f. It is good when f is being 

executed for its effect rather than its value, 

mawxxr Ex;fl = . [null[xl#IiIL; T# cons[f[car[xll; mapcar[cdr[x];f111 is like 

maplist except that it applies f to each element of x in turn, instead of to 

each tail in turn. 



(I /i 
30.5O.b8-1 

November 16, 1M 

8.0 prog 

As we have already mentioned, there is in Lisp a feature which a,l.l.o~s 
the programmer to write sequences of statements, just like Fortran, and transfer 

between them. To do this, use the pseudo-m&ion prog, thus 

reverse [xl = prog [Cyl ; 
a; ,[null Cxl# return [y]]; 

aetq [Y; cons Cc~lIxll;~ll; 
setq[x; cdr[x]]; 
go Ml 

which defines the library function reverse. Note that statements are separated 

by semicolons. The program variables are specified in the first list of the 

prog definition; they are bound by the prog and are set to NIL when it is 

entered. They may be regarded as function arguments which are always NIL 

when the function is called. 

_-. 

c :! 

Labels of statements are atoms followed by semicolons. Transfers are 

done with the function &. To leave the prog, execute the function return , 

which delivers its argument as the value of the prog. If the prog is left 
because the last statement was executed end did not include a go, its value 

is NIL. 

The function setq t&es the place of the Fortran assignment statement. 

It is of course the same function that is available outside of progs to set 

variables. This conclusion follows from the general rule that a statement in 

a prog may be any S- or M-expression which would be legal as the argument of 

a function. The one exception is that a conditional used alone as a statement 

is permitted to run off the end. Progs may of course be nested and may in fact 

appear wherever any other function call is legal. 



30.50.40-g-1 

Mw 28, 1965 

9.0 Property Lists 

An atom in Lisp is like a hatrack with hooks on which vsrious 

things can be hung. Some of these have already been discussed: the value, 

which is an S-expression; and the print name, which is the name of the atcm 

and not accessible to the programmer except on input-output. 

There is one more hook which is not used by the Lisp system itself 

for anything. This is the property list. It is an S-expression like the value, 

and its only function is to provide a convenient place to keep information about 

the atam. There are two functions connected with it. 

setlis [x;y] sets the property list of the atom x to be the S-expression y. 

getlis [xl has as its value the property list of the atom x. 



30.50.40-10-1 
November 16, 196 

10.0 Input-output 

Lisp does input-output with a smaJ3 number of useful functions. 

read is a function of no arguments which reads a single S-expression from 

the current input medium. Read will treat any punctuation chsracter except 

( 1 " and dot as an atom. It will also take any string of characters enclosed 

in a double quote as an atom. The first character of the string is not 

checked for double quote, i.e., to input W as atom write vItf'. 

print [xl prints the S-expression x on the current output medium. 

prinl [xl prints th e single atom x on the current output medium. 

th input [xl sets e input medium to the file whose name is the atom X* 

output [xl does the seme for the output medium. 

The input medium can also be set fYam the teletype. Both input and output 

media are reset to teletype by pushing the rubout button and by any error. 

Men the input or output medium is switched, the former input or output file 

is closed (unless it is the teletype). File names need not be quoted. 

terpri is a function of no arguments which prints a carriage return and line feed. 

c- 
c ,. 



-. 30.50.40-u-1 

Ma3r 28, 1965 

ILL.0 Other useful functions 

trace [x] t&es a list of function names and changes the definitions so that 

the function name end the arguments are printed each time the function is 

called, and the function name and the value are printed each time the function 

exits. 

untrace [xl reverses the action of trace. Untracing functions which have not 
been traced is likely to cause an error. If it does not, the function definition 
will not be correct afterwards. 

nlsmda [[xl; definition] is like lambda with the following exception: When 

the function defined by the nlamda is called, its arguments are collected 

literally and made into a list. x is then bound to this list. The arguments 
are not evaluated. Using nlsmda it is possible to write so-called pseudo- 

functions like quote, which do not follow the usual Lisp rules. In fact, quote 

is defined by 
quote [xl = nlamda [[xl; car [XII 



3Oy50.4~12-l 

MW 2% 1965 

12.0 Error comments 

Errors detected by the interpreter cause three character error 

comments and return control to the Lisp supervisor. The ermr comments are: 

Code 

ICD 

ILS 

IRP 

ISG 

RNA 

PCE 

SCE 

???, 

UAS 

GCH 

IIJ? 

IIP 

IIT 

function 

atom 

line 

line 

line 

line 

argument 

additional information meaning 

atom tried to take CAR or CDR of an atam 

ran off the end of a COND 

first arg tried to SETQ a non-atom or number T or NIL 

First arg" tried to RPLACA or RPLACD an atom 

first arg tried to SETLIS or GETLIS a non-atom 

argument non-numeric argument for an arithmetic function 

ran off pushdown list 

storage capacity exceeded 

disaster. give up 

illegal atom used as function name 

wrong number of arguments for built-in function 

wrong number of arguments for LWBDA 

unbound atom evaluated 

garbage collector snarled. give up 

> or . at the beginning of an S-expression 

e not followed by ( or atom 

. atom not followed by > 

illegal number 

PRINl cal&ed with non-atomic argument 



c > 

30.50.40-13-l 
November 16, 19% 

13 .O Special features of the M-language translator 

The internal OperatiOn of Lisp is exclusively in S-expressions, but fn 

practice all input and output of programs is done in M-language. Each list 

read from the input may contain either a single function definition or a single 

function call to be evaluated, Thus, to define cadr the following teletype 

input might be used: 

$( CADR [Xl = CAR [cDR[xII) 

to which Lisp would respond 

( CADR > - 

$ 

The translator types $ to indicate that it is waiting for more input. 

The M-language translator has a number of useful features, some of 

which are not yet implemented. The form which is now implemented is the one 

used in the function definitions in this manual; that is, it has no binary 

operators except the = of function definition and accepts no special symbols 

except single quotes. To this there are two exceptions: 

1) Double quotes may be used to input unmentionable characters as described 

in section 9. 

2) A function of one argument may be written without brackets surrounding 

the argument. Thus car cdr car x is equivalent to car [cdr[car[x]]]. 

A useful function for examining function definitions is see [x] where x is 

either a single function name or a list of names. This function prints out the 

definitions in M-language. 



I c_ 
30.50.40-14-l 

November 16, 1965 

c ‘1 1) 

“ B 

14.0 The Lisp Operating System 

To call in the Lisp system give the executive command 

@ LISP. 

The Lisp system will then read in the library and type $. At this point the 

M-language translator is in control and remains in control until either control 

returns to the exec, or the user types $ himself. In either case Lisp will be 

in S-language mode: each S-expression read in will be evaluated and the result 

printed out, as discussed in section 3. To return to M-language, type (XM). 

To change the input medium, type bell (control G), followed by a file 

name. Data is read from this file until an end of file is encountered, after 

which control returns to the teletype. Pushing the rubout button always returns 

control to the teletype. 

During input of text, AC (control A) deletes the most recently typed 

character in the current line. If there are no characters left in the current line, 

it has no effect. Q" deletes the current line completely. Once a carriage return 

has been typed, nothing can delete the line except the rubout button. Carriage 

return looks the same as space, and the system always provides a line feed. 

Whenever the Lisp system is doing anything, pushing the rubout button 

terminates the activity and returns control to the teletype. If this happens 

during computation, some atoms may have rather strange bindings. Other than 

this, no trouble can be caused by pushing the rubout button. 

After the rubout button has been pushed, pushing it again without typing 

anything else will cause control to revert to the exec. To return to Lisp 

without initializing the system, give the exec command 

@ coNTINuE LISP. 



appendix 1: Fixictions is the Lisp system 

30.50.40-A-1 

November 16, 19&j 

The following fknctions are machine coded in the Lisp system. 

Function name -+!F 

at om 
CCL-C 
C&t? 
caax 
cadr 
cdax 
cddr 
cond 
cons 
eq 
equal 
eval 
gens3rm 
getlis 
&O 
gtp 
lambda 
length 
list 
member 
minus 
nconc 
nlamda 
null 
numbp 
plw 
prinl 
print 
pm 
P-w2 
quot 
quote 
read 

return 
rplaca 
rplacd 
setlis 
setq 
subst 
terpri 
times 

2-2 
2-1. 
2-2 
5-2 

;I; 
y-2 

2-3 
2-2 
2-2 
2-h 

3-l 
5-2 

;I; 
4-1 
2-3 

5::. 
;:; 
6-l 
11-l 
5-2 
4-l 
4-l 
10-l 
10-l 
8-l 

;:; 
2-l 
lo-1 

6e:; 
6-1 

33:; 
5-l 
15-l 
4-l 



30.50.40-A-2 

November 16, 196 

The following functions are in the Lisp library 

Function name 

define 
and 
append 
function 
map 
mapcar 
mapcon 
maplist 
or 
pair 
rem 
reverse 
sassoc 
see 
set 
trace 
untrace 
xm 

5-2 

77:; 
7-l 
7-1 

i’i 

5’11’ 
13-l 
3-2 
XL-1 
11-l 
14-l 


